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The relativistic dynamics of electrons subjected to the electromagnetic field of an intense, ultrashort
laser pulse in vacuum is studied theoretically. The effects of both finite pulse duration and beam focus-
ing are taken into account. It is found that when the quiver amplitude of the electrons driven by the
laser field exceeds the focal spot radius of a Gaussian beam, the restoring force acting on the charge de-
cays exponentially, and the electrons are scattered away from the focus. This physical process, known as
ponderomotive scattering, effectively terminates the interaction within a laser wavelength, and the elec-
trons can escape with very high energy, as the normalized laser field is of the order of or greater than
unity. The relation between the scattering angle and the escape energy is derived analytically from the
conservation of canonical momentum and energy in the photon field. For a linearly polarized laser field,
the interaction produces two jets of high energy electrons. The theory is supplemented by detailed two-

dimensional computer simulations.

PACS number(s): 52.40.Nk, 42.50.Vk, 52.75.Di, 42.65.—k

I. INTRODUCTION

The recent advent of extremely high intensity, ultrafast
lasers using fiber compression [1], Kerr-lens mode lock-
ing [2], and, more recently, chirped pulse amplification
[3,4] has renewed the interest in laser acceleration for fu-
ture linear colliders. A number of acceleration schemes
have been proposed that use different geometries to
efficiently mediate the electron-photon interaction. Re-
cent experimental results have validated these schemes by
demonstrating high gradient laser-electron scattering in a
plasma beat-wave configuration [5] or in a plasma wake
field [6]. These proposals also include the concept of
free-wave acceleration known as nonlinear inverse brems-
strahlung, where the electrons interact with the laser field
and an externally applied field in a vacuum [7-9]. The
applied field can either be reversed periodically, as in a
tapered inverse free-electron laser [10], or remain uni-
form.

The focus of this paper is the theoretical study of the
interaction of an extremely intense, pulsed laser field
(normalized field of the order of or greater than unity)
with a single electron, in vacuum, in the vicinity of the
focus. In this electrodynamic system, two very different
regimes are possible. At lower laser intensity, in the
linear regime, the transverse quiver amplitude of the elec-
tron is small, and the effects of the transverse spatial gra-
dients in the vicinity of focus are essentially negligible.
In this case, the net kinetic energy gain for the electrons
scattered by the ponderomotive potential is very small, as
discussed extensively in the literature [11-16]. In the
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case of a standing wave, the electron is Bragg scattered,
as first predicted by Kapitza and Dirac [17]. This first-
order linear effect has been observed by Bucksbaum,
Schumacher, and Bashkansky [18]. In the high-intensity
limit, or nonlinear regime, the situation is fundamentally
different: the quiver amplitude imparted by the laser
wave to the electron becomes comparable to the beam
waist at focus, and the electron can be scattered away
with a high escape energy, since the laser-electron in-
teraction is effectively terminated within a wavelength A.
This phenomenon has been simulated in computer calcu-
lations [19], but was not identified as nonlinear pondero-
motive scattering. As will be shown in Sec. IV, the power
threshold P* for this process can be estimated by equat-
ing the relativistic quiver amplitude to the beam waist
wy, with the result that
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where 7, is the normalized injection energy of the scat-
tered electron. This threshold numerically translates into
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This physical process will be referred to as high-
intensity ponderomotive wave (HPW) scattering in the
remainder of this paper. An experimental observation of
this effect, at low electron energy ( < 80 keV), has been re-
ported [20].
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The problem is first studied analytically in the simple
case of a linearly polarized plane wave with a temporal
envelope, and the maximum electron energy is shown to
scale linearly with the laser intensity and with the injec-
tion energy. The theoretical framework for this electro-
dynamic system is constructed within the framework of
classical electrodynamics and special relativity. This
framework is appropriate because the average number of
photons scattered by an electron is very high, and the
photon field can be essentially treated as a classical, con-
tinuous electromagnetic field. The theory is then supple-
mented by detailed computer simulations, taking into ac-
count the transverse excursion of the accelerated electron
in the plane of polarization, the temporal structure of the
ultrashort laser pulse, and the effects of diffraction. The
comparison of the analytical theory with the computer
simulations enables us to benchmark the computer code.

In the two-dimensional analysis, we consider a relativ-
istic electron traveling along the propagation axis of the
wave. The electron motion is studied in the plane of po-
larization. The electron is overtaken by the laser pulse
close to the focus, and its energy is modulated as it ex-
periences the various phases of the electromagnetic field.
In the focusing region, the laser field amplitude increases
rapidly because of both spatial (focusing) and temporal
(slippage towards the center of the pulse) effects. As a re-
sult, the quiver amplitude increases exponentially, but the
particle is still confined around the propagation axis be-
cause the restoring force increases with the driving force.
In close proximity to the focus, however, this situation
can become unstable if the quiver amplitude exceeds the
focal spot radius. In this case, as the electron quivers
through the spatial gradient of the Gaussian laser field,
the restoring force decays exponentially, and the particle
can be scattered away from the focus, with a high energy.
This scattering mechanism is studied in detail with a
two-dimensional computer code. It is found that there is
a simple correlation between the scattering angle and the
escape energy of the electron. This correlation is then ex-
pressed analytically, and explained by using the invari-
ance of the canonical momentum in the photon field.

This paper is organized as follows. In Sec. II, we
present an analytical derivation of the relativistic dynam-
ics of an electron submitted to the electromagnetic field
of a plane wave laser pulse. We first briefly review the
main results in the case of an infinitely long pulse (no
temporal envelope variations). We than analyze the case
of a finite-duration pulse. These results are then used to
benchmark the two-dimensional computer simulations,
which are presented in detail in Sec. III. In Sec. IV, we
use the computer simulations to study the scattering
mechanism in a number of possible experimental
configurations. Finally, conclusions are drawn in Sec. V.

II. PLANE WAVE ANALYSIS

In this section, we review the dynamics of a relativistic
electron submitted to an intense, finite-duration, plane
wave, linearly polarized laser pulse. We first start with a
brief overview of the main results obtained for a plane
wave with no temporal envelope.
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A. Review of a continuous plane wave

The electron normalized velocity, normalized energy,
and momentum are defined as

v 1
=, ey ———" =vmguC .
B PR Gy —p p=ymycB
Neglecting radiation damping [21], the energy-
momentum transfer equations are
d,p=—e(E+vXB), (1)
—e
dy= SsV'E. (2)
mye

We now consider a linearly polarized plane wave propa-
gating in vacuo:

E=3RE,(¢)sing , 3)
Eo(¢)
B=y— ¢ sing , @)

where we have defined the electron phase in terms of the
laser frequency o,

t-—iﬂl. (5)
(4

With this, the energy-momentum transfer equations are
expressed as

(t)=w

d,(yB)=—20 (1-p, )sing , ©)
myc
d,(vB,)=0 )
d,(yB,)=—L28 Ging | (8)
mgc
—eE, .
dy= - B, sing . 9)

From Eq. (7) we have B, =const=0. Subtracting Eq. (8)
from Eq. (9), we find the invariant

y(1—B,)=const=yy(1—PB,) , (11)

where 7, and B, are the normalized injection energy and
velocity, respectively. In addition, we have by definition

1
—=1-B—B: . (12)
Y
It is the straightforward to show that
1+
7(¢)=1’o[1+[73x(¢)]2 > 2 ! . (13)

This equation is valid as long as we are considering plane
waves.
At this point, it is important to notice that

dp=w(1—PB,) ; (14)

therefore Eq. (6) can be integrated with respect to ¢,
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which is now treated as an independent variable. We
find, with the appropriate initial conditions,

vB.(¢p)=alcosp—1) , (15)
where we have introduced the normalized laser field
strength

eE eE A
a=—=—"2"_ (16)

omyc  2rmyc?

Here, A is the laser wavelength.

We now proceed to derive v, B,, and B, from Egs. (11),
(13), and (15). After some straightforward algebra, we
find

1+
y()=7v0|1+a*(cosp—1)? 230 ] , 17
— 2a(cosp—1)
- , 18
B+(9) Yol2+a(1+4B,)(cosgp—1)] 18
2(1—5,)
B.(d)=1— 2 . (19)

2+aX(1+8,)(cosp—1)?

It is easily verified that at ¢+ =0, the following initial con-
ditions are satisfied:

z(t=0)=0, ¢(t=0)=0, y(t=0)=y,,
B.(t=0)=0 B,(t=0)=p,.

The maximum energy of the electron in the laser field is
attained at ¢ =(2n + 1)7 and has the value

y*=vl1+2a%(1+B,)] . (20)

Using the well-known relation between the laser field and
intensity I,

Eo=V'2I /e , 1)

the maximum normalized electron energy in the laser
field is then given by

62

y*=y0[1+1k2—2—~70?(1+[30) . (22)

T EGM

For relativistic electrons, the maximum energy scales
linearly with the injection energy, reflecting the fact that
at high energy the electron remains synchronous with the
wave for a longer time as it is injected with a velocity
close to the speed of light. At high laser intensities, the
maximum electron energy also scales linearly with I.

The temporal evolution of the nonlinear phase is ob-
tained by using Eq. (14) and replacing (3, by its expression
given in Eq. (19). We obtain a nonlinear first-order
differential equation

_ 20(1—B,)
2+a(1+By)(cosp—1)*

d.¢ (23)

This equation can be solved analytically by the separation
of variables; the result is given in Eq. (32). We now
proceed to derive a number of important characteristics
of the electron trajectory by using ¢ as the independent
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variable. The transverse excursion of the electron in the
laser field can be derived as follows. We have

dx _dx dit __ By
d¢ dt d¢ w(1—B,) 24

Multiplying both the numerator and denominator of this
ratio by y, we obtain

dx _ ca(cos¢p—1) 25)
d¢  woy(l1—pB)

Equation (25) can easily be integrated analytically, which
results in

x ()= ca f0¢(cosu—1)du=c—a@j)———@ .

wyo(1—By) oy o 1—B,)
(26)

The evolution of the axial electron position as a function
of the phase can also be derived in a similar way. We
have

_dzdt __ vB
d¢ dt d¢ owyl1—PB,) @n

Replacing y and 3, by their values, Eq. (27) reduces to

dz___ e 2 i
46~ 2m(1—py 2Pot (1 +Bo)cosg—17] . (28)

We now use the identity

1—cos¢p=2 sinZJ;i , (29)
which yields the following differential equation for z:

dz _ c 2 .40

——=———By+ 1

a6 w(1—Fy Bot2a”(1+By)sin > (30)

Equation (30) is easily integrated [22], with the result that

| o

By using the definition of the nonlinear phase [Eq. (5)]
and replacing z (¢) by the solution given in Eq. (31), we
can replace the nonlinear differential equation governing
the evolution of the phase [Eq. (23)] by a transcendental
equation in ¢,

= ¢ 3,2

+a¥(14B,) ———M‘? —sing

d=wt— 1—_13_0 l¢[B0+%a2( 1+5]

FaX(1+8,) ‘—M‘g —sing

| o

The evolution of the electron energy, velocity, and posi-
tion as a function of phase is illustrated in Figs. 1-3 for
a=3 and y,=10.
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FIG. 1. One-dimensional evolution of the electron normal-
ized energy as a function of phase, for =3, ;=10 and no tem-
poral envelope.

B. Finite-duration pulses

We now consider a laser pulse with finite duration.
The electric and magnetic field associated with the laser
are

E=3XE,g(¢)sing , (33)

~Eo .
B=y-—c—g(¢)sm¢ R (34)

where the function g (¢) represents the temporal envelope
of the laser pulse. The relativistic energy-momentum
transfer equations can be expressed as

d,(yB,)=—aw(l—p,)g($)sing , (35)
d,(yB,)=—awB,.g(¢)sing , (36)
d,y=—awB,.g(¢)sing . (37

Subtracting Eq. (36) from Eq. (37), we recover the invari-
ant given in Eq. (11), namely

v(1=B,)=7o(1—B) . (38)
By using Egs. (12) and (38), we can show that
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FIG. 2. One-dimensional evolution of the electron normal-
ized velocity as a function of phase, for a=3, ;=10 and no
temporal envelope.
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FIG. 3. One-dimensional evolution of the electron normal-
ized transverse and axial position as a function of phase, for
a=3, y,=10 and no temporal envelope.

2

1+
1+a? [f0¢g(u)sin(u)du 23"

v(d)=7,

| o

This equation holds as long as plane waves are con-
sidered.

For the sake of simplicity, we now assume a cosine en-
velope of duration AT,

=K 2T |_b
g(éd) 0COS AT 1

Y (40)

Equation (39) can now be integrated analytically, with
the result that

[vB, (d)=a(d)sing+b(d)cosp+q , 41)

where we have defined

— s 4 _
a(¢d)=pksin|m A 1{], (42)
= 4 _ a
b(¢)=p cos|m A 1|+ 5 (43)
qg=K*p . (44)

Here, we have introduced A¢ =wA7 and the quantities

_ _a 1
k="

A¢) P—?I_KZ .

The maximum energy attained by the electron in the
laser wave is approximately given by

148,

1+a?

Y*=70 , (45)

where we have neglected the terms in k. This equation is
very similar to the one derived in the case of a continuous
wave, but the effective normalized wave amplitude is re-
duced by a factor of 2.

The transverse excursion of the electron as a function
of the phase can be derived as follows. The quiver ampli-
tude is governed by the differential equation

dx _dx dt _ clvBi(9)]

—gx et " TP 46
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FIG. 4. Normalized electric field of the laser wave as a func-
tion of phase for =0.055 TW/um? A=1 um, and A7=50 fs.

With the appropriate boundary condition [x (¢=0)=0],
we find that
% ($) =1+ Bo) 2= [ *[a (w)sinu +b (u)cosu +qldu ,

0 2w Jo

47)

which can be integrated analytically. The result can be
written in the form

x(¢)=‘yo(1+30)5%[A(¢)+B(¢)+¢1¢] , (48)
where we have defined
A($)=—LE—[(k—)sin(¢+xp—KkAd)
2(1—k*)
—(k+1)sin( — ¢+ Kd—KAd)

—2sin(kAd)] , (49)
B(¢)=—L—[(k—Dsin(¢+xp—KAd)
2(k°—1)
+ (k4 1)sin( — ¢+ Kk —kAP)
+ K sin(kAd)]+ %simﬁ . (50)
50
40
v(®)
30 +
20
10 = x
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FIG. 5. Normalized electron energy as a function of phase,
from 1D theory, for a finite-duration laser pulse. The laser pa-
rameters are the same as in Fig. 4, and y,=10.
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FIG. 6. Transverse electron trajectory as a function of phase,

from 1D theory, for a finite-duration laser pulse. The laser pa-
rameters are the same as in Fig. 4, and y,=10.

The maximum relativistic quiver amplitude can then be
closely approximated by

x*za'yo(1+30)% . (51)

To illustrate the derivations presented above, we have
evaluated the dynamical parameters of a relativistic elec-
tron (normalized injection energy y,=10) as a function of
its phase in the laser field for the following set of parame-
ters. The laser wavelength is lum, the laser intensity is
0.55X 10 W/cm?, and the pulse duration full width at
half maximum (FWHM) is 50 fs. The results are shown
in Figs. 4-6. In Fig. 4, the normalized electric field of
the laser wave is shown as a function of phase. The nor-
malized electron energy is shown in Fig. 5, and its quiver
amplitude is presented in Fig. 6. The normalized laser
field is =2, and the estimates for ¥* and x * are 50 and
6.35 pm, respectively. These estimates are seen to be in
excellent agreement with the analytical solutions. In ad-
dition, a small, systematic drift is observed in the trans-
verse direction, which corresponds to the nonzero value
of the parameter q [see Eq. (44)].

III. TWO-DIMENSIONAL COMPUTER CODE

In this section, we derive and discuss the main equa-
tions used in the two-dimensional computer code
designed to simulate the dynamics of a relativistic elec-
tron at the focus of a short-duration, intense laser pulse.
The geometry of the interaction is shown in Fig. 7. The
problem is entirely two-dimensional since the laser fieid
in the vicinity of the focus is described by the paraxial
ray approximation for a linearly polarized Gaussian
beam [23]

_ Eqexp[ —x2/w2(z)]

E(x,z,t)=X ———g(¢)
V1+(z/20)
. kx? z
Xsin |+ 2R 2) arctan Z H ,  (52)
B(x,z,t>=9M . (53)
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FIG. 7. Top: Schematic of the scattering process. Bottom:
geometry of HPW scattering.

Here g (¢) is the temporal pulse envelope and k =27 /A is
the laser wave number. We have introduced the Ray-
leigh range
wh
Zo=m—, (54)

A
the beam waist
2
Z
x|
and the radius of the converging and diverging spherical
wave fronts

172

w(z)=w, |1+ , (55)

z}
R(z)=z+ i (56)

Here, w, represents the beam waist at focus (z =0). The
electric field associated with the wave is related to the
peak laser power through the relation

P=mexcE} fowr exp[—2(r/w0)2]dr=-z-—socE(2,w§ . (57

To ensure computational stability, the relativistic
energy-momentum transfer equations are solved as a
function of phase, which is considered as the independent
variable, and normalized as follows:

dy(yB,)=—aG(x,£)g (¢)sin[¢+e(x,8)], (58)
=—afB,G(x,£)g(P)sin[p+e(x,8)] . (59)

Here, we have introduced the following normalized vari-
ables

=kz(¢),

x(¢>=zw"—‘k‘ﬂ=kx(¢), §(¢)=2‘n‘2(}\)

and the normalized functions
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1 _ 72(1+Bz)
1=B,(¢)  1+(yB. )2’

_1_ &
£(X,§)—-Eﬁ_§m—arctan(§) , (61)

—(x /kwg )2 [14(E/kzy )]~}
G(x,6)= expl — (/kwo T1+(8/kz0)") T} 62)
V1+(E/kzy)?

In the above, f is a large parameter associated with the
relativistic Doppler upshift, € corresponds to the spheri-
cal wave front curvature in the vicinity of focus, and G is
the Gaussian spatial transverse envelope of the beam.

In order to increase the accuracy of the code, we use a
second-order Taylor expansion

h(¢+084)=h(d)+8¢ds[h ()]

f(¢)= (60)

2
+ 25 431h(4)1+0(54%) . 63)

Here, h (¢) represents any generic function of ¢. To ob-
tain the second-order derivatives of yf3,, vf3,, and v, we
differentiate Eqs. (58) and (59) with respect to the phase.
Neglecting d,e and d,G, which are slowly varying func-
tions of the phase, we find

d}(yB,)=—alg(¢)cosp+singd ;g (4)] , (64)

di(y)=—af[{[dy(B.)+fB:d4(B,)]g(¢)
+B.dy(g)}sing+B,g (¢)cosd] , (65)

dj(yB,)=d}(y) . (66)

The derivative of the temporal envelope with respect to
the phase is

— T 94 _
d;g(4) 2A¢Sm T Ad 1] . (67)
The other derivatives in Egs. (64) and (65) are given by
d¢ﬁx(¢)=%[d¢(7’l3x)—ﬁxd¢1/] : (68)
1
d¢Bz(¢):—y—[d¢(sz)_Bzd¢Y] . (69)

The normalized axial and transverse coordinates of the
electron are governed by the following differential equa-
tions in ¢:

dy _, dx dr _

) kdtd¢ fBx (70)

dE _, dz dt _

7 ke 7 fB; . (71)
The corresponding second-order derivatives are

dix=f1dy(B,)+fB.dy(B,)], (72)

diE=f%d,B, . (73)

The integration procedure employed in the computer
code is the following. The electron initial position and
velocity correspond to the initial phase ¢ =0, when the
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laser pulse starts to overtake the particle, as shown in
Fig. 7. The numerical integration is performed from
¢=0 to ¢ =2, when the electron is no longer interacting
with the wave. At each computational step, the fields are
evaluated at the electron position and used to compute
the first- and second-order derivatives of the dynamical

|
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quantities with respect to phase. These quantities are
then updated through the second-order Taylor expansion
described in Eq. (63), as well as the normalized electron
coordinates. A check on the accuracy is performed by
evaluating

[v(¢+84)—[1—BL($+84)—Bi$+54)]']

A(p+6¢)= |2

Typically, for 8¢=27X 1073, A<107°,

The code can now be benchmarked against the one-
dimensional (1D) analytical theory presented in Sec. IIB
by choosing a very large value for the beam waist at
focus. To illustrate the computer code presented above,
we have evaluated the dynamical parameters of a relativ-
istic electron (normalized injection energy y,=10) as a
function of its phase in the laser field for the following set
of parameters. The laser wavelength is 1 um, the peak
laser intensity is set at 0.55X 10! W/cm?, the pulse dura-
tion (FWHM) is 50 fs, and the beam waist at focus is 1
mm. The normalized electron energy is shown in Fig. 8,
and the transverse quiver motion is presented in Fig. 9.
The simulation results are in excellent agreement with
the analytical solutions presented in Figs. 5 and 6, and
demonstrate the validity of the code in the 1D limit.

IV. LASER-ELECTRON PONDEROMOTIVE
SCATTERING

In this two-dimensional analysis, we consider a relativ-
istic electron traveling along the propagation axis of the
wave. The spatial envelope of the laser field in the focus
region is modeled by a Gaussian beam, and the temporal
envelope is a raised cosine. The laser wave is linearly po-
larized.

In this electrodynamic system, two very different re-
gimes are possible. At low laser intensity, the transverse

50

40

¥(®)

20

10

27

FIG. 8. Normalized electron energy as a function of phase,
from 2D simulations. The laser parameters are =2, A=1 um,
A7=50 fs, and wo=1 mm. The electron is injected at focus
with a normalized energy y,=10.

{r(¢+84)+[1—BL(s+8¢)—BL($+54)]71/%)

(74)

r

quiver amplitude of the electron is small, and the effects
of the transverse spatial gradients in the vicinity of focus
are essentially negligible. In this case, there is no net
kinetic-energy gain for the electrons, and the results
closely resemble those found in the one-dimensional case,
as the transverse motion of the electron is confined in a
region of space which is much smaller than the laser
beam waist. In the high power limit, however, the situa-
tion is fundamentally different: the quiver amplitude im-
parted by the laser wave to the electron becomes compa-
rable to the beam waist at focus, and the electron can be
scattered away with a high escape energy, as the laser-
electron interaction is effectively terminated within a
wavelength.

The power threshold P* for HPW scattering can be es-
timated by equating the relativistic quiver amplitude [see
Eq. (51)] to the beam waist w, with the result that
4

, (75)

where y, is the normalized injection energy of the scat-
tered electron. This threshold numerically translates into

w, |*

0.21
TW .
x W

3

P*=

10

X(pm)

5+

0 5 10 15 20 25 30
2%

FIG. 9. Transverse electron trajectory as a function of phase,
from 2D simulations. The laser parameters are a=2, A=1 pum,
Ar=50 fs, and wy=1 mm. The electron is injected at focus
with a normalized energy y,=10.
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FIG. 10. Two-dimensional evolution of the electron normal-
ized energy as a function of phase for a=3.41, A=1 pm,
Ar=100 fs, wo=20 um. The electron is injected at z=—7.6
mm with a normalized energy y,=10.

In the two-dimensional analysis presented here, we
consider a relativistic electron traveling along the propa-
gation axis of the wave. We first consider the dynamics
of an electron injected with y,=10 in the electromagnet-
ic field of a 100 TW peak power, 1 um wavelength, and
0.1 ps duration laser pulse, which is focused down to
wy, =20 pm. The evolution of the electron energy as a
function of its phase in the laser wave is shown in Fig. 10.
The electron is overtaken by the laser pulse close to the
focus (z=—7.6 mm), and its energy is modulated as it
experiences the various phases of the electromagnetic
field. In the focusing region, the laser field amplitude in-
creases rapidly because of both spatial (focusing) and
temporal (slippage towards the center of the pulse)
effects. This is shown in Fig. 11, where both the spatial
and temporal pulse envelopes are shown along the elec-
tron trajectory, as a function of position with respect to
focus (z =0). As a result, the quiver amplitude increases
exponentially, as shown in Fig. 12, but the particle is still
confined around the propagation axis because the restor-
ing force increases with the driving force. In close prox-
imity to the focus, however, this situation becomes unsta-
ble as the quiver amplitude is of the order of, or exceeds,
the focal spot radius. In this case, as the electron quivers
through the spatial gradient of the Gaussian laser field,

g(4)

50 60 70 80 90 100
&2

FIG. 11. Spatial and temporal laser pulse envelopes as func-
tions of phase. [he parameters are the same as in Fig. 10.

150
100
50
X(pm)
0 A A JAY [\ /
AV ARVALY V)
-50 . *
15 20 25 30

2T

FIG. 12. Two-dimensional evolution of the electron trans-
verse position as a function of phase, in the vicinity of focus.
The parameters are the same as in Fig. 10.

the restoring force decays exponentially, and the particle
is scattered away from the focus, with a high energy.
This is shown in Fig. 13, where the trajectory of the elec-
tron is plotted in the x-z plane, and in Fig. 14, where the
field acting on the electron along its trajectory through
the laser focus is presented. The scattering effect is much
stronger for electrons that are seeded into the laser wave
prior to focus because these electrons are confined in the
laser beam until they reach focus, where they experience
the strongest possible electromagnetic fields. The max-
imum scattering energy is obtained for those electrons
which have the optimum phase ¢ =A¢ when they are lo-
calized at the laser focus.

We now consider the dynamics of electrons injected
with ¥,=10 in the electromagnetic field of a 15-TW peak
power, l-um wavelength, 0.8-ps duration laser pulse
which is focused down to w,=4.95 pm. These parame-
ters correspond to an existing Nd:glass laser system built
and operating at the Lawrence Livermore National Labo-
ratory [4,24], and yield a normalized field value a=5.34.
To show the influence of the initial position (at ¢ =0) of
the particles with respect to focus, we have calculated the
escape energy of the electrons, after HPW scattering, as a
function of their injection z. The results are shown in
Fig. 15, which represents the axial energy spectrum of

150

100

X(pm)
0 AA Avl\'AvAvAVA
.50 "
-10 -5 0 5
z(mm)

FIG. 13. Two-dimensional electron trajectory in the x-z
plane. The parameters are the same as in Fig. 10.
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Normalized Electric Field

2%

FIG. 14. Normalized electric field of the laser pulse calculat-
ed along the electron trajectory through focus, as a function of
phase. The parameters are the same as in Fig. 10.

HPW scattering. The acceleration process is phase sensi-
tive, but there is a well-defined lobe that has a fairly wide
acceptance of approximately 10 mm. The peak energy is
v =235, which is within 20% of the value defined in Eq.
(45), y*=293, in the one-dimensional theory. The trans-
verse acceptance, which is related to the scattering cross
section, is shown in Fig. 16, for the optimum injection
z=—44 mm. The asymmetry is related to the fact that
there is no particular phase relation between the laser
pulse and its temporal envelope. The accelerating gra-
dient corresponding to the parameters discussed above is
2.6 GeV/m.

As seen in the simulations presented above (see Fig.
17), there is a simple correlation between the scattering
angle and the escape energy of the electron. This correla-
tion can be expressed analytically by using the invariance
of the canonical momentum in the photon field. From
the expression of the two-dimensional laser field given in
Egs. (52) and (53), it is easily seen that Eq. (38) still holds,
which yields

YB, =y —vo(1—By) . (76)

Using energy conservation, we can also write
250
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FIG. 15. Axial energy spectrum of HPW scattering. The
ND:glass laser parameters are P=15 TW, A=1 um, A7=0.8 ps,
and wy,=4.95 um. The electron is injected on-axis with a nor-
malized energy y,=10.
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FIG. 16. Transverse acceptance of HPW scattering. The
ND:glass laser parameters are P =15 TW, A=1 um, A7=0.8
ps, and wy=4.95 pm. The electron is injected at z=—44 mm
with a normalized energy y,=10.
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Bx | _y*—1 _
> ! (77)

Combining Egs. (76) and (77) yields the sought-after ex-
pression of the scattering angle as a function of the ener-

gy
172
2 Y 4
0 148y || 7o 78
= t
(y )=arctan 7 —va1=Ba) (78)

This theoretical function for the scattering angle is shown
in Fig. 17, and the agreement between the simulated
value and Eq. (78) is seen to be excellent. Therefore, this
angular distribution can be considered as the signature of
HPW scattering. At this point, we note that even for a
fixed target experiment, such as the one described in Ref.
[20], the electrons have a small initial energy. In terms of
the scattering angle, this translates into a maximum
scattering angle

] 172

6 2Bo(1+ Bo)

Yo

=arctan s (79)

max

which tends to 90° as the initial electron energy tends to

3.5

Scattering Angle (deg)
O R
T T T T T

o
w
T

0 50 100 150 200 250
Normalized Output Energy

FIG. 17. Scattering angle as a function of the normalized es-
cape energy. The squares represent 2D simulations results,
while the solid line corresponds to Eq. (77). The laser parame-
ters are the same as in Fig. 15, and y,=10.
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FIG. 18. Energy multiplication factor as a function of the
laser power. The other laser parameters are the same as in Fig.
15, and y,=10.

zero. This scattering angle corresponds to electrons hav-
ing acquired the energy

y(emax)=’}/0(l+ﬁ()) . (80)

This effect should be detectable at low energy, and might
be a useful diagnostic of the initial energy distribution of
the scattering target (for example, a pure electron plasma
[25)), as @,,,, is a strong function of ¥ [see Eq. (79)].

Finally, the laser intensity can be varied to study the
variation of the scattering energy with the normalized
field @. The results are shown in Fig. 18 and clearly show
the scaling of this scattering process with the laser inten-
sity. In this case, we have calculated the maximum ener-
gy of the scattered electrons for different values of the
laser intensity, for a shorter laser pulse (50 fs FWHM), to
limit the computing time. The other laser and electron
parameters are 1 um wavelength, 4.95 um focal waist,
and y,=10.

V. CONCLUSIONS

We have described the theoretical study of the interac-
tion of an extremely intense, pulsed laser field (normal-
ized field of order unity) with a single electron, in vacu-
um, in the vicinity of the focus. In this electrodynamic
system, two very different regimes are found. At low
laser intensity, the transverse quiver amplitude of the
electron is small, and the effects of the transverse spatial
gradients in the vicinity of focus are essentially negligible.
In this case, there is no net kinetic-energy gain for the
electrons, as discussed extensively in the literature. In
the high power limit, or nonlinear regime, the situation is
fundamentally different: the quiver amplitude imparted
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by the laser wave to the electron becomes comparable to
the beam waist at focus, and the electron can be scattered
away with a high escape energy, as the laser-electron in-
teraction is effectively terminated within a wavelength.
This effect is identified as nonlinear ponderomotive
scattering, or HPW scattering. Detailed computer simu-
lations, taking into account the transverse excursion of
the accelerated electron, the temporal structure of the ul-
trashort laser pulse, and the effects of diffraction were
presented. In the two-dimensional analysis, we consider
a relativistic electron traveling along the propagation axis
of the wave. The electron is overtaken by the laser pulse
close to the focus, and its energy is modulated as it ex-
periences the various phases of the electromagnetic field.
In the focusing region, the laser field amplitude increases
rapidly because of both spatial (focusing) and temporal
(slippage towards the center of the pulse) effects. As a re-
sult, the quiver amplitude increases exponentially, but the
particle is still confined around the propagation axis be-
cause the restoring force increases with the driving force.
In close proximity to the focus, however, this situation
can become unstable if the quiver amplitude exceeds the
focal spot radius. In this case, as the electron quivers
through the spatial gradient of the Gaussian laser field,
the restoring force decays exponentially, and the particle
can be scattered away from the focus, with a high energy.
This scattering mechanism is studied in detail with a
two-dimensional computer code. It was found that there
is a simple correlation between the scattering angle and
the escape energy of the electron. This correlation was
then expressed analytically, and explained by using the
invariance of the electron energy and canonical momen-
tum in the laser field. The computer simulations show
that for an injected normalized energy of 10, electrons
starting to interact with the wave 44 mm before focus can
be scattered by the ponderomotive potential of a 15 TW,
A=1 pum, 800 fs FWHM Nd:glass laser with a focal spot
size wy=4.95 pum, with energies as high as 115 MeV.
The corresponding accelerating gradient is 2.6 GeV/m.
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